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Abstract

We study the minimal number(e, d) of information evaluations needed to compute a worst case
g-approximation of a linear multivariate problem. This problem is defined over a weighted Hilbert
space of function$ of d variables. One information evaluation bis defined as the evaluation of
a linear continuous functional or the valuefddit a given point. Tractability means thate, d) is
bounded by a polynomial in bot# 1 andd. Strong tractability means thate, d) is bounded by a
polynomial only ine—1. We consider weighted reproducing kernel Hilbert spaces with finite-order
weights. This means that each functiondofariables is a sum of functions depending onlygdn
variables, wherg™ is independent ofi. We prove that finite-order weights imply strong tractability
or tractability of linear multivariate problems, depending on a certain condition on the reproducing
kernel of the space. The proof is not constructive if one uses values of
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1. Introduction

We study linear multivariate problems that are defined on spaces of functions of many
variables. For some applications, the number of variadbledarge and may be even in the
hundreds or thousands, as is the case for some financial applicatiof$2ka&'e want
to compute a worst cageapproximation to a linear multivariate problem. Lat, d) be
the minimal number of information evaluations that are necessary to compute sech an
approximation. Since—1 andd may be large, we want to verify wher(e, d) depends
polynomially one~! andd for all ¢ andd. We say that the linear multivariate problem
(or more formally a sequence of linear operators defined on functiodsafables, with
d = 1,2,...) is tractableif n(e, d) is bounded by a polynomial in bottr! andd. We
say that the linear multivariate problemsgongly tractableif n(e, d) is bounded by a
polynomial ine 1, independently ofl.

Tractability of linear multivariate problems has been intensively studied in recent years,
sed7] forasurvey. The main emphasis was on finding necessary and sufficient conditions on
strong tractability and tractability of linear multivariate problems, as well as on algorithms
that achieve strong tractability or tractability error bounds.

To explain the problem studied in this paper, we need to add that the linear multivariate
problem is defined as a continuous linear operatpover a spacer,; of functions of
d variables. The initial error is the norm ¢f; and is equal the worst case error of the
zero algorithm over the unit ball of ;. We want to improve this initial error by a factor
¢ € (0, 1), and compute an approximation for which the worst case error is atah6st.
Approximations taS, f are obtained by computing continuous linear functionals. Usually
two classes! of such functionals are analyzed. The first ond is- A2 and consists of all
continuous linear functionals, and the second onéis 45%and consists of only function
values. Obviously, the minimal number of evaluations depends$;@nd A4 and therefore
we haven(e, d) = n(e, Sg, A).

Classically studied spacds are isotropic, that is, all variables play the same role and
if f € F4thenthe functiorg(r1, 12, ..., t2) = f (i, tiy. - - . . ti,) Obtained by an arbitrary
permutationiy, i2, ..., iz of indices 12, ...,d is also an element of,; with the same
norm asf. For such isotropic spaces, many linear multivariate problemigatable,
and typicallyn(e, Sy, A) depends exponentially od. This is often called the curse of
dimensionality.

It has been observed, probably for the first timfLid], that strong tractability or tractabil-
ity holds forweightedspacesF,; in which the role of successive variables is diminishing
and controlled by a sequence of weights[16], the multivariate integration problem has
been considered over the reproducing kernel Hilbert spaceith the kernel

d
Kat.x) = [[@+y; min—x;,1—1;) V;.x; €[0.1].
j=1

Then multivariate integration is strongly tractable ﬁﬁl 7; < oo, see[10] for the

sufficiency and8] for the necessity of this condition. In fact, the condit@jr‘jﬁ‘;l 7; <00
is often needed for strong tractability for other multivariate problems. For example, it is
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a necessary and sufficient condition for the multivariate approximation problerfi,&ee
This condition appears also in other spaces; see again the §idtvey
Observe that the kerndé,; given above can be rewritten as

Kat, )= > 74.Kau(tX), €Y
uc{1,2,....d}

with yg , = [[;e, 7; @andKau(t, ) = [[;¢, min(l —1;, 1 — x;).

It was observed ifi3,9] that it is also appropriate to study tractability for kernels of the
form (1) with weightsy, , not necessarily equal {d ;. 7; since we can then control each
group of variables indexed by the subset

For a number of problems, although the number of variables may be large, functions
depend mainly on groups of few variables. This holds for functions arising in finance which
often depend on groups of two or three variables [2get,15]. This means that a function
of X = (x1, x2, ..., x4) with d large or very large can be approximated well by

f(X) = Z fu (Xu)

uc{l,...d}, lul <q*

JjEu

with a relatively small valug*. This leads tdinite-orderweights, which are defined by
assuming thay, , = 0 for all d and for allu whose cardinalitylu| is larger thang*.
Assuming thay* is the smallest integer with this property, the numbérs called the
order.

This is the point of departure of our paper. We consider weighted Hilbert spaces with
reproducing kernels of the form (1) for general and finite-order weighfsand for ageneral
kernelK4 ,(t,x) = ]_[jeu K (tj, x;) for some reproducing kerné, not necessarily equal
to min(1—¢, 1—x), defined for;, x; € D. Thatis,H (K ,) is the tensor product space of
H (K) with active variables from the subsetUsually,D is assumed to be a subsettfand
H(K) is a reproducing kernel space of univariate functions. We propose a generalization
by considering tensor products of spacesmfariate functions. For some applications
the study ofm-variate functions as building blocks of tensor products is important. For
example, the problem of integration over products of unit spheres is analyizgdiihe unit
sphere is a subset & 1. Using polar coordinates this problem is equivalent to integration
over products ob-dimensional cubes which correspondsite= s. As another example,
multivariate Feynman—Kac path integration is analyzed witpace components 6]
and[5]. The algorithms developed in these papers are based on algorithms for multivariate
approximation for the tensor products &ivariate problems. Again this corresponds to
m=s.

Hence, the reproducing kernel Hilbert spad€K) is a space ofn-variate functions
defined onD c R™, and the reproducing kernel Hilbert spalléK ;) with the kernel of
the form (1) is the space of functions which can be written as a sum of functions from the
spacesi (7, , Ka..) depending, for non-zerg, ,, on atmostu|m variables. For finite-order
weights with ordeg*, we then have that any function frori(K ;) is a sum of functions
depending on at mo&t= ¢*m variables.

For many applications the domaihof functions fromH (K) is unbounded, e.gD) =
R™. In this case, it is useful to introduce a non-negative weight functicsuch that
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Jp p(t)dt = 1. This function will be used as the weight in the output space in which
we will measure the errors of approximations. Throughout this paper we assume that

B :=/ p(®)K(t,1)dt < oco.
D

This assumption is crucial for our analysis. In particular, it implies that the approximation
problem defined by1 f = APP f = f € Ly ,(D) for f € H(K) has the worst case
complexity in the classt?' bounded by

n(e, APP, A3 < Be=2.

Hence, the only dependencemris throughB. In a forthcoming papdi 9], using different
proof techniques, we will provide tractability results even o= oco.
The results given in this paper depend also on

A::/ pM)p(x)K(t, x)d(t, x).
D2

Obviously,A € [0, B], and it may happen that = 0. For example, foD = [0, 1] and
p(t) =1, take

K(t,x) = Ba2(|t = x|) + (t = a)(x — a),

whereBs(x) = x2 — x + % is the Bernoulli polynomial of degree 2, ande [0, 1]. Then
A=1(1-2a)?andA =0iffa = 3.

Itis well known thatAis the norm of the integration problem definedfayf = INT1f =
Jp p@) f(t)dt inthe spaced (K), i.e.,[[INT1]| = A.

Hence,A = 0 means that all functions frof (K') have zero integrals.

We are ready to state the results obtained in this paper. Assume first thad. Then
we prove, see Theoreg) that the multivariate approximation problem definedshy =
APP; f = f for f € H(K,) is strongly tractablefor arbitrary finite-orderweights, and

B\7 [1\? B\ [1\*
n(e, APP;, A8 < (-) (-) and n(s,APPd,AS‘d)g%(—) <-> .
A e A e

We also prove that the exponential dependencg*as present for some spaces and some
finite-order weights. It is known that the exponent 2 at ifdhe classA? cannot be
improved in general, sd@0]. It is an open question whether the exponent 4 in the class
A% can be improved for an arbitrary linear multivariate problem.

For A = 0, we prove, see again Theor@pthat the multivariate approximation problem
is tractablefor arbitrary finite-orderweights, and

n(e, APP;, A2 = 0(d? ¢ 2) and n(e, APP,, A5 = 0(d% %),

We also show that strong tractability does not hold for some finite-order weights, and that
the dependence ahis indeed of degreg* in the class1?!.

Similar results hold for arbitrary linear multivariate problems, assumingS$hé also
continuous in the spaoez,pd(Dd), see (13) and (19). More specific results are presented
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for multivariate integration with the same conclusion that 0 implies strong tractability
for the spacédi (K ;) and arbitrary finite-order weights, and thiat= 0 implies tractability.

We also present certain conditions on arbitrary weights for which we obtain strong
tractability or tractability of linear multivariate problems. The essence of these conditions is
that they are always satisfied by finite-order weights, as well as for other weights for which
V4., is sufficiently small ifju| is large, see Theorendsand4.

Finally, we want to stress that the results 47\ are obtained by non-constructive argu-
ments. That is, we know that there are linear algorithms for which we can achieve strong
tractability or tractability error bounds but we do not know how to construct such algorithms.
The construction of such algorithms will be the subject of a future pdSér

2. Problem formulation

We now precisely define the linear multivariate problems that are studied in this paper.
We first define the spaces for these problems. They are given as a sum of tensor products
of Hilbert spaces with reproducing kernels.

For a given integem, and for a Lebesgue measurable Bett R™, consider a weight
p: D — R;such tha;fD p(t)dt = 1. LetH (K) be a separable reproducing kernel Hilbert
space ofm-variate Lebesgue measurable real functions defin&with a non-zero kernel
K : D x D — R. We assume that

B :=/ p(t) K(t,t)dt < oo. (2)
D

The assumption (2) implies th&&(K) C L ,(D). Indeed, forf € H(K) we havef () =
(fs KCoD) ey and £20) <15 1K G DI ) With [K ¢, 017, = K (2, 1). Then

1/2
I lLa, ) = ( /D p(t)fz(t)dt)

1/2
< I flax) (/Dp(t)K(t,t)> dt < oo, 3

as claimed.

We now taked > 1, defineDy = D x D x -+ x D € R, andp,(t) = [1%_; p(t})
wheret = [tq, 12, ..., tz] with z; € D. CIearIy,fDd pa)dt =1.

In what follows, we assume thatis a subset of indices from the ddt, 2, ..., d}. By
lu| we denote the cardinality of. Lety = {y, ,} be a non-zero sequence of non-negative
weights. This means that for eadlwe have 2 non-negative weightg, ,. Asin[3,9], we
say thaty = {y, ,} arefinite-orderweights if there exists an integgrsuch that

Vau = 0 forall (d, u) with lu| > q. (4)

Finite-order weightg are oforder ¢* if ¢* is the smallest non-negative integgesatisfy-
ing (4).
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For an arbitrary sequencgeof weights and! > 1, we consider the weighted reproducing
kernel Hilbert spacéf (K ;) of real functions defined oP,; with the kernel

Ka.Y) =7ap+ > Yau] [ K@j.y) YX.y€Dq. (5)
N#uc{l,2,....d} Jjeu

We now characterize functions fromi(K,). Let Kz, (X, y) = ]'[jeu K(xj,y;)forx,y e
D, denote atermin (5). Clearl¥, , is the reproducing kernel of the Hilbert spaé¢éK ; ,,)
of functions f (t1, 12, . . . , t4) defined onD, which do not depend on for all j ¢ u. The
spaceH (K4 ) is the tensor product space of the spacesafariate functions depending
on variables with indices from the subsetHereK,; 3 = 1 andH (K4 4) = span{1}.

We stress that, in general, some non-zero functions may belong to si&&gs,) for
many different subsets For example, assume that the constant funcfiea 1 belongs to
H(K). Then this function obviously belongs (K ) for all u. Functions fromH (K )
can be represented as a sum of functions fié(K,; ,). That is, forf € H(K;) we have

f = Z fu = Z Vd,ufd,u with fM = Vd,ufd,u € H(Kd,u)- (6)
uc{l1,2,....d} uc{1,2,...,d}

The termf,; , depends only ofu| m-variate variables indexed by the suhbsefor finite-
order weights the last sum consists@fd¢") terms, where* is the order of the weights,
and each term depends on at mgsi: variables.

In general, the representation (6) a$ hotunique, and we have

LWk =00 vaull iy f = D Vawfau With fa, € H(Kau) ¢,
u u

se€[1, p. 353].

For positive weightg, ,, the representation (6) is unique iffd H(K). If 1 ¢ H(K)
thenH (K4.,) N H(K4 ) = {0} for all distinct subsets andv of {1, 2, ..., d}. The Hilbert
spaceH (K ) is then the direct and orthogonal sum of Hilbert spaééx ; ,,) for all subsets
of u, and forf, g € H(K;) we have

(& ukn = D,  Vaulfau 8du)H(Ke.- (7)
uc(1,2,....d)

Later, we will be using a simple condition guaranteeing th@tA (K). Namely, let
A= /DZP(I),O(X)K(I,X)d(Z,X)- (8)
Clearly A € [0, B], and the following lemma holds.
Lemma 1. Suppose thatt = 0. Then
1¢ H(K). 9)
Moreover for every non-empty, v C {1, ..., d}

ifu#v then Wy,f=0 VfeHKqy,), (20)
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whereW, , : F; — F4 is given by

Wa,u f(X) :=/ pgOKg,(t,X) f()dt VX € Dy.

Dy

Proof. The lemma follows from the already mentioned fact that 0 implies INT1(f) =
Oforanyf € H(K). Then INTy(1) = 1 # Oyields 1¢ H(K).

It is also known that INT(f) = (f, h)uk) with h(y) = fD p(t)K(t,y)dt. Hence,
A =0impliesh =0, i.e.,

/ p(t)K(t,y)dt =0 Vye D.
D

Foru # v, letj* e u Uvand;* ¢ uNv. Then
WauKav(,y)(X) = / PaMKau(t,X) Kao(t,y)dt =0,
Dq

since the last integral is proportional fg p)K(t,z)dt = 0, wherez = y;« if j* € v,
andz = x« if j* € u. This holds for any € Dy and sinceH (K4 ,) is the completion of
sparf{Kq (-, y) : Yy € Dy}, this completes the proof. O

We now return to the general case, i.e., we do not necessarily assumegh#t(X).
Observe that (2) yields

My = / pa®) Kat. ) dt = 7,
Dy

[u]
+ Z Vdu ([DP(f)K(t,l)dt> < oc0. (11)

P£uc{1,2....d}

This implies thatt (K4) C L2,p,(Dg) since one can show, similarly as in (3), that for any
f € H(Kz) we have

1/2
1/2
1 fllLa,, 00 = (/D Pd(t)fz(t)dt> < ||f||H(Kd)Md/ . (12)
d
Consider now linear multivariate operators defined over the spfaces H (K ;). More
precisely, ford = 1,2, ..., let
Sa : Fg — Gy

be a continuous linear operator with a separable Hilbert sgac&imilarly to[20], we as-
sume that the operatsy is also continuous with respect to the norm of the sgacg, (D).
That is, there exists a non-negative numBgrsuch that

1Safllce < Call fliLa,, 00y Y € Fa (13)

Themultivariate(weighted)approximation problens defined as a specific instance of the
previous problem withS; = APP; andGy = L2 ,,(Dg), where APR f = f for all
f € Fy. Clearly, for multivariate approximatioit;; = 1 for all d.
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Our goal is to approximate elemerfigf for f € F;. We approximates,; f by com-
puting finitely many valued.( f) of continuous linear functionals belonging to a class
of permissible functionals fronf; to R. We study two classes of. The first one is1 =
A = F7, consisting of all continuous linear functionals, and the second atesis15Y,
consisting of function evaluations. That s, € A8 iff there exists & € Dy such that
L(f)= f() forall f € F;. Obviously,L is also continuous since(f) = (f, K4(-, 1)),
and||L|| = K/t 1), i.e., 459 ¢ A",

For our problems itis known that adaptive choice of linear functionals as well as nonlinear
algorithms do not decrease the error more than non-adaptive information evaluations and
linear algorithms, see e.411]. That is, for a fixed number of functional evaluations, the
error is minimized by linear algorithms that use non-adaptively chosen linear functionals.
Hence, we can restrict our attention to such linear algorithms

Adn(f) =) Li(faj,
j=1

whereL; € Aanda; € Ggforj=1,2,...,n.
The worst case error of the algorithay ,, is defined as

Saf — A
ewor(Adyn) = sup ” df d,nf”Gd ,

feFy Il fIlE,

with a convention 0 = 0. SinceS; andA, , are linear, we obviously haw#° (A, ,) =
ISz — A4, |l. Here the operator norm is frofy; to G,. This implies that

1Saf — Aanfllc, <NflE, - " (Aan) Y f € Fa.

Forn = 0, we formally setd; o = 0 and there"W°" (A ,.0) = ||Sz]| is the initial error which
can be obtained without sampling the functidrisom F,;. We want to reduce this initial
error by afactoe € (0, 1). We are interested in finding the smallest numbefrevaluations
for which it is possible. Let

n(e, Sq, A) := min{n : 3A4, usingL; € A such thae"*" (A4 ,) <ellSqll}-

Since we are using different spaces and different operator norms, we will sometimes write
ISqll = 11Sall r;—c, to make it clear what spaces are involved in the operator norm.

As in many papers dealing with tractability, we say that the multivariate prop$gins
tractablein the class/ if there exist non-negative numbeCsp andq such that

n(e, Sqg, A)<Ce ?d9 Vee(0,1) Vd=1,2,.... (14)

The numberp = p({S;}, A) andg = g({Ss}, A) in (14) are called- andd-exponents of
tractability; we stress that they are not necessarily uniquely defined.

If ¢ = 0in (14) then we say that the multivariate problésy} is strongly tractablein
the class1. TheexponentpS'({S,}, A) of strong tractabilityis defined as the infimum of
numberg satisfying (14) withy = 0.

Hence, tractability means that a polynomial number of evaluatiosisliandd is enough
to reduce the initial error by a facter whereas strong tractability means that this number
is bounded only by a polynomial 1! independently odl.
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3. Main results
We present in this section estimates o, Sy, A1), and tractability results for spaces
equipped with general and finite-order weights for clas$®sand 459 We begin with

estimates on the norm of ARP

Lemma 2. Recall that A andB < oo are given by(8) and(2), respectively.
e There exists a numbey € [A, B] such that

1/2
IAPP[| = |APPy I Fyrpy 00 = | D Tauch'| (15)
uc{1,2,....d}
e If A=0then
) 1/2
IAPRy I = IAPPl sz, 0 = _max | (a, W) (16)

whereW : H(K) — H(K) is given by
Wf(x) =/ pM)K(t,x)f(t)dt VxeD
D
and||W |l = IAPPLIZ )1, (p) < B-

Proof. ObviouslyA € [0, B] andB is assumed to be finite. From (12) we have || APR
M;/Z and Mj/z corresponds to (15) with; = B. Hence,||APPy|| is upper bounded by

(15) withcy = B. On the other hand, consider the multivariate integration
NTor = [ poswat viers
Dq

Then [INT4 || < |APPy|| since|INTa £ <l fllz,,, (0 = IAPP:flL,,,(py- It is well
known that
1/2

1/2
|||NTd||=(/D 2pda)pd(x)Kd(t,x)d(t,x)) =1 > vauA"
d

uc{1,2,....d}

Hence,|APP; | is lower bounded by (15) with; = A. By continuity of the right-hand
side of (15) as a function @f; we conclude that there ig € [A, B] for which (15) holds.
Let W; = (APP)*APP; : F; — Fy. Itis known that

Wa f (x) =/ pa(OKa(t, X) f(1)dt, a7)
Dy
and||APPy £ 2,0,y = (Wa f. f)7.. Hence APy = [|Wy[|*/2 Using (5) we have

Waf = Y pauWauf YfE€Fa
uc{1,2,....d}
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where, as in Lemma,
W f (X) = / P Kot ) fO)dt VX € Dy C RO,
Dy

We now show that
Wauf € HKqy) Y fe€Fy.

Foru = #, this is trivial sinceWg g f = 7,4 fDd paOfM)dt € H(Kgyp). Foru # ¢,
let {e;} be an arbitrary orthonormal system Bf K). It is well known that the kerndf is
related tofe;} by the formula

dim(H (K))
K(t,x)= Z ex(Der(x) VYt,x e DC R™.
k=1

For the kernek, ,, we have

dim(H (K))
Kout.) =[]k xp =T D eatpetxp)| Vij.x;eD.
JEu jeu k=1

Foru = {u1, us, ..., ug}withs = |u|,andk = [k1, k2, ..., ks]1 € {1,2,...,dim(H(K))}*,
denotee, i (X,) = ]_[j.zl ex; (xy;) for x, € Dy,|. Then

dim(H (K))
Kou® )= > euk(tenk()
kiko, .. ks=1
and therefore
dim(H (K))
Wauf (X) = Z eu,k(xu)/ paOeuk(ty) f(O) dt.
k1kpsoy=1 Da
Since{e, «} is an orthonormal system @& (K, ,,), we have
dim(H (K)) 2
2 _ 2 _
1Wa,ufllE, = ||Wd,uf||1-1(1(d_u) = Z (/ Pd(t)eu,k(tu)f(t)dt>
kiko, . ks=1 \ D
dim(H (K))
< Y [ nwroaf pnda,
1.k, k=1 D Da

_ ||f||§2pd(Dd)/ bt Kautit) dty = 1 £12, (o) BY.
o |, |

u]

This proves thaw, , f € H(K,4,) and

IWaufIEy = IWauf kg <1 F Loy, 0 B™/? ¥ f € Fa.
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Assume now thatt = 0, and letf = >, i1 o 4 Va,vfao fOr fau € H(Kqv). Then,
due to Lemmd,

Wa’,uf = Vd,qu,ufd,u- (18)

This means tha/, f = ), ngqu,ufd,u and

2 2
LFI0Z, =D Yaul fau gy 0
u

2 3 2
IWa £z, =D 93 Wau Faull i, -
u

Clearly, the norm ofW,, depends only on the cardinality afand is equal tg|Ww||!I.
Hence, we have

IWall = maxy, , | Waull = maxyg, [IW[".
since(Wf, fYui) = ||f||§2Vp(D) <BIIf 1%, by (3), we conclude that

IW I = IAPPLI% &) 1, () < B-

This completes the proof. (1

3.1. Upper bounds on(e, Sy, A)

In this subsection, we present upper bounds on the minimal nun(bes,, A) for
arbitrary weights) = {y, ,}. These bounds will allow us to conclude (strong) tractability
for finite-order weights and for arbitrary weights satisfying a certain condition. In the next
subsection, we present lower boundsga, S;, A).

Theorem 1. Let M, be given by(11) and C,; by (13). Assume there exists a non-negative
numberyx such that

CallAPR ||

Ny:i= sup —— 40— oo (19)
T s d* 1Sall Fus Gy
Then
My 1\?

,S ’Aa” <d20(N2— - , 20

e S DS AN ppE s (20)
2 4
My 1

LSy A < | (24282 —2 ) (=) . 21

(e Sa. A7) “1apraz) \& (1)

Proof. We first analyze the clas$?. Our proof will be essentially the same as the proof
of Theorem 4.1.1 0of20], which is for the absolute errors; = 1, and for a setD, of
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finite Lebesgue measure wijy;, = 1. To cover these differences, and for the sake of
completeness we present the modified proof. We start with,A#lE consider the operator
W4 given by (17). Itis known thal/, is a compact and self-adjoint operator. L&t ;, {4, ;)

be eigenpairs oW,, so thatW,(; ; = 44,; {4 ; With

ta1Ztap = - 20 and ({4, 0q )R = i

We also have

(Cair Ca.j o,y 00y = Wala i, Ca j) g = 2a.i0i -

The sequencg, ;} forms an orthonormal system &f;, and therefore

Ka(t,) =" ;0 ;0.

j=1
Then

o0

o0
My = /D PaOKaC At =3 Ca 12 la a0 = 3 -
d =

i=1
Sincejig j <laj+2aj-1+ -+ 2a1< Y ioq 2a,i = Mg, we conclude that
Jaj <Mgj~t

It is known, sed13], that the algorithm

n

Ay ()= (f Lo m Ca

j=1

has the minimal worst case error among algorithms usiagaluations of, and its worst
case error is

1/2 _
(A% ) = Va1 < M+ 172

From this we obtain

My 1\?
JAPP, Ay < ——£ (Z) 22
n(e APFa ) S (appy 2 (s) 22

For a general problersi;, consider the algorithn§; A7 . Using (13), we have

1S0f = SaAG, FllGy _ Calf = A5, flia,00 _ CaMy”

£, - £, NUESWE
This yields
n(s, Sd,/la”) < %<}>2
ISall%, g, \&
_ dZa( Cal APPy | )2 My <g>2_ 23)
d*||Sallry—c, ) IIAPP.]12 \ &
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From (19), we conclude that

; My 1\2
n(e, Sq, Aa”) <d2dN3 W <g> s

which proves (20).

We now analyze the clas4®, For the multivariate approximation problem, we use
Theorem 1 of17] which bounds theth minimal errore(n, A5 of algorithms using at
mostn function values (information from the clags'®) by the kth minimal errors(k, 42"
in the class1®. Namely we have

1/2
Ma k > . (24)

n

’Astd < min 2 k’AaII
e(n ) k=0,1,... e( )+

As already provede?(n, A2") < My/(n + 1). Hence, takingc = [/n — 1] for n >1 we
conclude that

2M,
v

eZ(n’ AStd) <

Using this inequality, we obtain thatn, AStd) < ¢||APPy|| holds for

2M, 21
JAPP, A <n=| [ —5) = |. 25
e APR AT RMAPP[JnZ) SJ (29

For the problenisS,}, let us consider the algorith§y A, ,(f) = Z’}:l f(tj)Sqa; with
aj € Fy. Then

ISaf = SaAan(Nlcy _ CalAPPll If = Adn (DL, )
[1Sall 1Sall |APP, ||
If = Adn(lLz,, 00

< d*N,
* IAPP, |

It is shown in[17] that the estimate (24) on e (4> for multivariate approximation holds
for certain algorithmst, , witha; € Fy.

Hence, to solve the multivariate problesy it is enough to solve the multivariate ap-
proximation problem APPwith ¢ replaced by /(d *N,); andn(e, Sy, A9 is therefore
bounded by:(¢/(d *N,), APP,, A%% . This and (25) leads to (21), and completes the proof.

O
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Using Lemma2 and Theorenil, we are ready to prove the main result of this paper
which shows strong tractability and tractability of multivariate probl€i$ig for finite-
order weights, depending on whetlfeis positive or zero.

Theorem 2. Lety = {y, ,} be arbitrary finite-order weights of ordey*. Let
B

= 5 .
”APP]-”H(K)%LZWU(D)

o If A= [, p()p(x) K(t,x)d(t, x) > Othen
° the multivariate approximation problem is strongly tractable in the clast¥sand
A%9 The exponents of strong tractability satisfy

PSUUAPRy), A3 <2, pST{APPR), A3 < 4

and we have

q* 2
n(e, APP;, A7) < <§> <%> , (26)

2q* 4
n(e, APP,, 4519 < {4 (%) (%) -‘ (27)

° the multivariate probleniS,} is strongly tractable in the classet and A% and
the exponents of strong tractability satisfy

PUSa), ARy <2, pSU((Sy), A5 < 4

wheneve(13) holds and
CallAPP ||

M =
d=1.2... ISallFy— Gy
Furthermore,
B\ /1\?
n(Sa Sd9 Aa”) < MZ (Z) <_> 3 (28)
&

2q* 4
n(e, Sq, 459 < [41\44 (%) (;-L) —‘ (29)

o If A= [ p()px)K(t,x)d(t, x) = Othen
° the multivariate approximation problem is tractable in the clas$®sand 459, The
exponents of tractability satisfy

p((APP), A2 <2, q({APPy), A7) < g,
PUAPP,), A5 <4, g({APPy), A1) < 24
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and we have
. q* d 1\ 2
n(e, APPy, A3 < I Z( ) <-) , (30)
- J &
Jj=0
\ 2
td i (d 1)
L APP,;, A5 < 211 . - , 31
n(e, APPy, 459 Z( ]) (8) (31)

j=0
° the multivariate problen{s,} is tractable in the classeg® and 45 and the
exponents of tractability satisfy
p(Sa), AN <2, q((Sa), AN <q* + 22,
pUSa), A <4, q({Sa), A% < 2¢* + 4o,
wheneve(13) holds and there exists a non-negative numbéar which
CallAPR, ||

Ny = —_—
d=1.2.. A*|1SallF,— G,
Furthermore,
I 20 772 La 1\?
al o *
n(e, Sq, A <d**NZI Z(}) <g> : (32)
j=0
. 2
A 1\
n(e, Sq, A% < | | 24%*N219 (J) (-) . (33)
&
j=0

Proof. By (15) of Lemma2,

My Yuc@e..d)VduB"
IAPP, 12

with ¢4 € [A, B].
o]
Zuc{l,Z ,,,,, d} Vd,ucd

We now assume that > 0. Thenc, is also positive and for finite-order weights wigh
as its order we have

My 2uc(l2...d) “/d,uCLzul (B/ca) (B)‘f*
< .

= — 34
IAPP, 12 A (39

ful
Zuc{l,z...,d} YduCq

Note that for APR, we have ¢ = 1 and (19) holds wittx = 0 andNg = 1. Then
(34) and (20) of Theorert with « = 0 proves that multivariate approximation is strongly
tractable and the estimate (26) on iA®P;, 42" holds.

For linear multivariate problerfS;}, we note thatvo = M < oo. Then (34) and (20) of
Theoreml yield strong tractability ofS;} and the estimate (28). This concludes the proof
for the class1® andA > 0.
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Consider now the clas$?' andA = 0. From (16) of Lemma& we know that| APP, ||2 =
ma, 74, | WI|"“!. Then for finite-order weights we have

My S Tal W B AW S <d)
S ’ I 1=r7 ). 35
IAPP |2 maX, g, IIW [ ng* ;O J

which is a polynomial ird of degree;*. Using (20) of Theoren with o = 0, we conclude
that multivariate approximation is tractable and the esting&dgdqn n(s,APP,, A2 holds.
As before, we obtain tractability fdiS;} and the estimate (32) on n(eq SA by using

the bounds om (s /(d*N,), APP;, A2"). This completes the proof for the cladd".
We now turn to the clasd>'%. Assume first tha#t > 0. Then (25) and (34) yield

20*
B\ 1
std

This proves strong tractability of multivariate approximation in the cl4¥8 and the es-
timate (27) on n(¢APP,, A5, Similarly, we obtain strong tractability diS;} and the
estimate (29) by using the bound @te/ No, APP;, A% with Ng = M.

If A =0,then (25) and (35) yield

2

q*
% 1
n(e, APPy, A% < | 217 ) (‘j) =
&

j=0

This proves tractability of multivariate approximation in the cld$¥ and the estimate (31)
onn(e, APP,;, 459, Replacing by £/(d*N,), we obtain tractability ofS;} and the esti-
mate (33). This completes the proof.[]

Theorem? addresses (strong) tractability {f;} for arbitrary finite-order weights. It is
possible to obtain (strong) tractability {f; } for other weights satisfying a certain condition.
This condition is given in the next theorem.

Theorem 3. LetA, B, o, N, and W be defined as in Lemand Theorem.. Assume there
exists a non-negative numbgisuch that

Fﬁ = Ssup F/g_d < 00, (36)
d=12,...

where

. Zuc{l,Z,..,,d} yd.uB‘ul
Fﬁ,d =

.....
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Then
e the multivariate approximation problem is strongly tractableggit= 0 and tractable if
B > 0in the classest® and A5 Furthermore,

2
n(e, APPy, A% <afry <}> , (37)
&

&

4
n(e, APPy, A5 < [(m/frﬁ)z (1> W , (38)

e the multivariate problem(S;} is strongly tractable ifx = f = 0, and tractable if
«+ f > 0in the classest?! and 4%, Furthermore,

1 2
n(e, Sy, Aall) <d2a+ﬁN§Fﬁ (_) , (39)
&

4
n(e, Sq, 459 < ’7(2d2°‘+/f Ngrﬁ)z (1> W . (40)

&

Proof. To conclude (strong) tractability of ARPand S, it is enough to use the esti-
mates (20) and (21) of Theoretras well as the bounds av,/||APP; 2. From Lemma2
we know that

Md < Zu yd,uBlu‘
IAPPIIZ = 64,0 mad, 4, IWIH + (1 —6a.0) X, 74, A

<dry.

From this we get all the estimates of the theorenf.

It is easy to check that the conditidfy < oo for some non-negativé may hold for
weights which are not finite order. For example, consider product weights, s§&@,16].
Thatis,,, = []je.74,; for some positive numberg; ; with j = 1,2,...,d.If A €
(0, B) then it is easy to check that

le{zl Vd,j
a:= sup ——~
d=1,2.... Ind+1)

implies thatl'g < oo for f = a(B — A).

Another example is for order-dependent weights, [8¢eTheny, , = n, ,, for some
positiven, , withk = 1,2, ..., d. For example, take, , = d~*. Then we havd'y < oo,
since

3 B = Xd: (Z) (g)k _ <1+ g)d <eb.

u k=0
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3.2. Lower bounds on(g, Sy, A)

In this section, we prove lower boundsmg, S;, A) which show that some bounds from
the previous section are sharp. Since, Sy, AStd) >n(e, Sq, Aa”) we restrict ourselves to
the class1®. Furthermore, since the multivariate approximation problem plays an essential
role in our analysis, we present lower bounds onlySpe= APP,.

In particular, we will check that the estimates of Theor2for arbitrary kernel«k and
finite-order weights are sharp in the following sense. kot 0, Theoren? states strong
tractability for multivariate approximation, although the estimate:an APP,, A3 de-
pends exponentially on the ordgf. We show that this exponential dependence is indeed
present for some kerneksand some finite-order weights, and that the exponential depen-
dence is througliB/A)?", as in the estimate (26).

We now present such an example. ket= 1, D = [0, 1]andp(¢) = 1 forallz € [0, 1].

For a positive integek, consider the kernel

k
K(t.x) =1+2)(sin(2mjt) sin(2mjx) + cos(2ujt) cos(2ujx)) .
j=1
Then H(K) = span{1sin(2nx), cos(Zwx), ..., sin(2rkx), cos(2tkx)}. We haveA = 1
andB = 1+ 2k. The operatowVis now given by

1 k 1
W (x)=/ f(t)dt—l—ZZ(sin(anx)/ sin(2j1) f (t) dt
0 ] 0

1
+ cos(szx)/ cos(2tjt) f (1) dt>.
0

It is easy to check thaWf = f for all f € H(K). Thus,W has the eigenvalue 1 of
multiplicity 1 + 2k. Observe that thgfold tensor product operatd¥; of Whas(1 + 2k)/
eigenvalues equal to 1.

For a given § andd > ¢*, consider weights, , = O for all u except foru = u* =
{1,2,...,q*} with y, .~ = 1. Then the approximation problem ovEI(K,) is equivalent

to the approximation problem ovéf(]_[’]’.;l K (tj, x;)). This approximation problem is of

norm 1, andi (s, APP;, 42") is equal to the total number of eigenvaluedigf larger than
2. For ¢ <1 we have

*

) B\?
n(e, APP;, A2 = (14267 = (X) .

This proves that the exponential dependenceydwia (B/A)4", as in @6), is sharp in
general.

For A = 0, Theorem2 states tractability, but not strong tractability, of multivariate
approximation for arbitrary kernd&l and finite-order weights. We show that indeed strong
tractability does not hold for some finite-order weights. We also show that the degree of the
dependence odiis g* as in the estimate (30).

Thus, consider the multivariate approximation problem with= 0. From (9) we
know that 1¢ H(K). Let (4;,(;) be the eigenpairs dV, so thatW(; = 4;{; with
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lazipz - 20, and((;, {)uk) = 9 ;. We havels = [|W]|, and sinceK is non-
zero we havel; > 0. We take finite-order weights, , = 1//1‘1“| for all ju] <g¢*. Then
IAPP;|| = 1 by (16).

Foru = @ we takel;(x) = 1. Foranyk = 1,2, ..., ¢* and anyu = {u1, ua, ..., ug} C
{1,2,...,d}, define

k
L0 = [ Gy
j=1

Ford > ¢*, we consider the operatd¥; and conclude from (18) that

Walyg =Ly, Waly, =,

This means that the orthogonal functiofys {, are eigenfunctions oW, and 1 is the

eigenvalue oW, of multiplicity 3., < ,« 1. Therefore foe < 1 we have

q*
n(e, APP;, A > 3" (jl) :
j=0

This shows that strong tractability does not hold, and that we have a polynomial dependence
ond with orderg™*, exactly as in the upper bound estimate (30).

4. Multivariate integration

In this section we consider the multivariate integration problem in which
Saf =INTyf = / pafM)dt VY f e H(Ky).
Dq
Recall that

INTA? = [ puOps0KaC0dE 30 = 32 3,40,
bg uC(L,2.....d)

In particular, ifA = 0 then|INT4||? = V4.4 In this case, we will assume that ; > 0 to
make multivariate integration non-trivial.

For the classi?', the multivariate integration problem is not interesting sinceNTA?!
andn(e, INT4, A42") = 1 for all ¢ > 0. For the class1'® we may apply Theorer@. For
example, to apply (28) we note th@; = 1. Hence, for finite-order weights with > 0
we have

IAPRII2 _ Ty vauch’ _ (5)4*
IINTalI2 3, 7q0AM — A

Then (28) states that(s, INT 4, A5 < [4(B/A)® e —4. This estimate may be signifi-
cantly improved when the multivariate integration problem is analyzed directly without
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relating this problem to the results of Theor@rfor the multivariate approximation prob-
lem.
In order to do this, we will use the estimate fr¢2i], formula (20), which states that

Jp, PaOKa(t, t) dt 1) <1>2

[z Pa®paOKat. ) dtx) 7] \e

n(e, INT 4, A5 < (

In our case, we have

1 B‘“| 1 2
(e, INTy, 49 < (ZeldeBl g (_> .
Zu yd,uA " €
This estimate yields the following theorem.

Theorem 4. Consider multivariate integration defined ovié( K ;) with arbitrary weights.
e LetA > 0.The multivariate integration problem is strongly tractable for arbitrary finite-
order weights of ordeg* and

q* 2
n(e, INT 4, A5 < (<§> - 1) <}> .
A e

e LetA=0.If

Vd
fa.u Bl”l < 00

I'p= su
ruciL2...dy 49

1
d=12..dF

for some non-negativg, then the multivariate integration problem is strongly tractable
if # = 0 and tractable iff > 0, and

1 2
n(e, INT4, 459 <dry <-> .
&
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