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Abstract

We study the minimal numbern(ε, d) of information evaluations needed to compute a worst case
ε-approximation of a linear multivariate problem. This problem is defined over a weighted Hilbert
space of functionsf of d variables. One information evaluation off is defined as the evaluation of
a linear continuous functional or the value off at a given point. Tractability means thatn(ε, d) is
bounded by a polynomial in bothε−1 andd. Strong tractability means thatn(ε, d) is bounded by a
polynomial only inε−1. We consider weighted reproducing kernel Hilbert spaces with finite-order
weights. This means that each function ofd variables is a sum of functions depending only onq∗
variables, whereq∗ is independent ofd. We prove that finite-order weights imply strong tractability
or tractability of linear multivariate problems, depending on a certain condition on the reproducing
kernel of the space. The proof is not constructive if one uses values off.
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1. Introduction

We study linear multivariate problems that are defined on spaces of functions of many
variables. For some applications, the number of variablesd is large and may be even in the
hundreds or thousands, as is the case for some financial applications, see[12]. We want
to compute a worst caseε-approximation to a linear multivariate problem. Letn(ε, d) be
the minimal number of information evaluations that are necessary to compute such anε-
approximation. Sinceε−1 andd may be large, we want to verify whenn(ε, d) depends
polynomially onε−1 andd for all ε andd. We say that the linear multivariate problem
(or more formally a sequence of linear operators defined on functions ofd variables, with
d = 1,2, . . .) is tractableif n(ε, d) is bounded by a polynomial in bothε−1 andd. We
say that the linear multivariate problem isstrongly tractableif n(ε, d) is bounded by a
polynomial inε−1, independently ofd.
Tractability of linear multivariate problems has been intensively studied in recent years,

see[7] for a survey.Themainemphasiswasonfindingnecessaryandsufficient conditionson
strong tractability and tractability of linear multivariate problems, as well as on algorithms
that achieve strong tractability or tractability error bounds.
To explain the problem studied in this paper, we need to add that the linear multivariate

problem is defined as a continuous linear operatorSd over a spaceFd of functions of
d variables. The initial error is the norm ofSd and is equal the worst case error of the
zero algorithm over the unit ball ofFd . We want to improve this initial error by a factor
ε ∈ (0, 1), and compute an approximation for which the worst case error is at mostε‖Sd‖.
Approximations toSdf are obtained by computing continuous linear functionals. Usually
two classes� of such functionals are analyzed. The first one is� = �all and consists of all
continuous linear functionals, and the second one is� = �std and consists of only function
values. Obviously, the minimal number of evaluations depends onSd and� and therefore
we haven(ε, d) = n(ε, Sd,�).

Classically studied spacesFd are isotropic, that is, all variables play the same role and
if f ∈ Fd then the functiong(t1, t2, . . . , td ) = f (ti1, ti2, . . . , tid ) obtained by an arbitrary
permutationi1, i2, . . . , id of indices 1,2, . . . , d is also an element ofFd with the same
norm asf. For such isotropic spaces, many linear multivariate problems areintractable,
and typicallyn(ε, Sd,�) depends exponentially ond. This is often called the curse of
dimensionality.
It has been observed, probably for the first time in[10], that strong tractability or tractabil-

ity holds forweightedspacesFd in which the role of successive variables is diminishing
and controlled by a sequence of weights. In[10], the multivariate integration problem has
been considered over the reproducing kernel Hilbert spaceFd with the kernel

Kd(t, x) =
d∏

j=1

(1+ �j min(1− xj , 1− tj )) ∀tj , xj ∈ [0, 1].

Then multivariate integration is strongly tractable iff
∑∞

j=1 �j < ∞, see[10] for the
sufficiency and[8] for the necessity of this condition. In fact, the condition

∑∞
j=1 �j < ∞

is often needed for strong tractability for other multivariate problems. For example, it is
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a necessary and sufficient condition for the multivariate approximation problem, see[18].
This condition appears also in other spaces; see again the survey[7].

Observe that the kernelKd given above can be rewritten as

Kd(t, x) =
∑

u⊂{1,2,...,d}
�d,uKd,u(t, x), (1)

with �d,u = ∏
j∈u �j andKd,u(t, x) = ∏

j∈umin(1− tj , 1− xj ).
It was observed in[3,9] that it is also appropriate to study tractability for kernels of the

form (1) with weights�d,u not necessarily equal to
∏

j∈u �j since we can then control each
group of variables indexed by the subsetu.
For a number of problems, although the number of variables may be large, functions

dependmainly on groups of few variables. This holds for functions arising in finance which
often depend on groups of two or three variables, see[2,14,15]. This means that a function
of x = (x1, x2, . . . , xd) with d large or very large can be approximated well by

f (x) =
∑

u⊂{1,...,d}, |u|� q∗
fu(xu)

with a relatively small valueq∗. This leads tofinite-orderweights, which are defined by
assuming that�d,u = 0 for all d and for allu whose cardinality|u| is larger thanq∗.
Assuming thatq∗ is the smallest integer with this property, the numberq∗ is called the
order.
This is the point of departure of our paper. We consider weighted Hilbert spaces with

reproducingkernelsof the form(1) forgeneral andfinite-orderweights�d,u, and forageneral
kernelKd,u(t, x) = ∏

j∈u K(tj , xj ) for some reproducing kernelK, not necessarily equal
to min(1− t, 1−x), defined fortj , xj ∈ D. That is,H(Kd,u) is the tensor product space of
H(K)with active variables from the subsetu. Usually,D is assumed to be a subset ofR, and
H(K) is a reproducing kernel space of univariate functions. We propose a generalization
by considering tensor products of spaces ofm-variate functions. For some applications
the study ofm-variate functions as building blocks of tensor products is important. For
example, the problemof integration over products of unit spheres is analyzed in[4]. The unit
sphere is a subset ofRs+1. Using polar coordinates this problem is equivalent to integration
over products ofs-dimensional cubes which corresponds tom = s. As another example,
multivariate Feynman–Kac path integration is analyzed withs space components in[6]
and[5]. The algorithms developed in these papers are based on algorithms for multivariate
approximation for the tensor products ofs-variate problems. Again this corresponds to
m = s.
Hence, the reproducing kernel Hilbert spaceH(K) is a space ofm-variate functions

defined onD ⊂ Rm, and the reproducing kernel Hilbert spaceH(Kd) with the kernel of
the form (1) is the space of functions which can be written as a sum of functions from the
spacesH(�d,uKd,u)depending, for non-zero�d,u, on atmost|u|m variables. For finite-order
weights with orderq∗, we then have that any function fromH(Kd) is a sum of functions
depending on at mostk = q∗m variables.
For many applications the domainD of functions fromH(K) is unbounded, e.g.,D =

Rm. In this case, it is useful to introduce a non-negative weight function� such that
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∫
D

�(t) dt = 1. This function will be used as the weight in the output space in which
we will measure the errors of approximations. Throughout this paper we assume that

B :=
∫
D

�(t)K(t, t) dt < ∞.

This assumption is crucial for our analysis. In particular, it implies that the approximation
problem defined byS1f = APP1f = f ∈ L2,�(D) for f ∈ H(K) has the worst case
complexity in the class�all bounded by

n(ε,APP1,�all)�Bε−2.

Hence, the only dependence onm is throughB. In a forthcoming paper[19], using different
proof techniques, we will provide tractability results even forB = ∞.
The results given in this paper depend also on

A :=
∫
D2

�(t)�(x)K(t, x) d(t, x).

Obviously,A ∈ [0, B], and it may happen thatA = 0. For example, forD = [0, 1] and
�(t) = 1, take

K(t, x) = B2(|t − x|) + (t − a)(x − a),

whereB2(x) = x2 − x + 1
6 is the Bernoulli polynomial of degree 2, anda ∈ [0, 1]. Then

A = 1
4(1− 2a)2 andA = 0 iff a = 1

2.
It is well known thatA is the norm of the integration problemdefined byS1f = INT1f =∫

D
�(t)f (t) dt in the spaceH(K), i.e.,‖INT1‖ = A.
Hence,A = 0 means that all functions fromH(K) have zero integrals.
We are ready to state the results obtained in this paper. Assume first thatA > 0. Then

we prove, see Theorem2, that the multivariate approximation problem defined bySdf =
APPdf = f for f ∈ H(Kd) is strongly tractablefor arbitrary finite-orderweights, and

n(ε,APPd ,�all)�
(
B

A

)q∗(
1

ε

)2

and n(ε,APPd ,�std)�
⌈
4

(
B

A

)2q∗(
1

ε

)4
⌉
.

We also prove that the exponential dependence onq∗ is present for some spaces and some
finite-order weights. It is known that the exponent 2 at 1/εin the class�all cannot be
improved in general, see[20]. It is an open question whether the exponent 4 in the class
�std can be improved for an arbitrary linear multivariate problem.

ForA = 0, we prove, see again Theorem2, that the multivariate approximation problem
is tractablefor arbitrary finite-orderweights, and

n(ε,APPd ,�all) = O(dq
∗
ε−2) and n(ε,APPd ,�std) = O(d2q

∗
ε−4).

We also show that strong tractability does not hold for some finite-order weights, and that
the dependence ond is indeed of degreeq∗ in the class�all.
Similar results hold for arbitrary linear multivariate problems, assuming thatSd is also

continuous in the spaceL2,�d (D
d), see (13) and (19). More specific results are presented
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for multivariate integration with the same conclusion thatA > 0 implies strong tractability
for the spaceH(Kd) and arbitrary finite-order weights, and thatA = 0 implies tractability.
We also present certain conditions on arbitrary weights for which we obtain strong

tractability or tractability of linear multivariate problems. The essence of these conditions is
that they are always satisfied by finite-order weights, as well as for other weights for which
�d,u is sufficiently small if|u| is large, see Theorems3 and4.
Finally, we want to stress that the results on�std are obtained by non-constructive argu-

ments. That is, we know that there are linear algorithms for which we can achieve strong
tractability or tractability error boundsbutwedonot knowhow to construct suchalgorithms.
The construction of such algorithms will be the subject of a future paper[19].

2. Problem formulation

We now precisely define the linear multivariate problems that are studied in this paper.
We first define the spaces for these problems. They are given as a sum of tensor products
of Hilbert spaces with reproducing kernels.
For a given integerm, and for a Lebesgue measurable setD ⊂ Rm, consider a weight

� : D → R+ such that
∫
D

�(t) dt = 1. LetH(K) be a separable reproducing kernel Hilbert
space ofm-variate Lebesguemeasurable real functions defined onDwith a non-zero kernel
K : D × D → R. We assume that

B :=
∫
D

�(t)K(t, t) dt < ∞. (2)

The assumption (2) implies thatH(K) ⊂ L2,�(D). Indeed, forf ∈ H(K)we havef (t) =
〈f,K(·, t)〉H(K) andf 2(t)� ‖f ‖2H(K)‖K(·, t)‖2H(K) with ‖K(·, t)‖2H(K) = K(t, t). Then

‖f ‖L2,�(D) :=
(∫

D

�(t)f 2(t) dt

)1/2

� ‖f ‖H(K)

(∫
D

�(t)K(t, t)

)1/2

dt < ∞, (3)

as claimed.
We now taked �1, defineDd = D × D × · · · × D ⊂ Rdm, and�d(t) = ∏d

j=1 �(tj )
wheret = [t1, t2, . . . , td ] with tj ∈ D. Clearly,

∫
Dd

�d(t) dt = 1.
In what follows, we assume thatu is a subset of indices from the set{1,2, . . . , d}. By

|u| we denote the cardinality ofu. Let� = {�d,u} be a non-zero sequence of non-negative
weights. This means that for eachdwe have 2d non-negative weights�d,u. As in [3,9], we
say that� = {�d,u} arefinite-orderweights if there exists an integerq such that

�d,u = 0 for all (d, u) with |u| > q. (4)

Finite-order weights� are oforder q∗ if q∗ is the smallest non-negative integerq satisfy-
ing (4).
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For an arbitrary sequence� of weights andd �1, we consider the weighted reproducing
kernel Hilbert spaceH(Kd) of real functions defined onDd with the kernel

Kd(x, y) = �d,∅ +
∑

∅�=u⊂{1,2,...,d}
�d,u

∏
j∈u

K(xj , yj ) ∀ x, y ∈ Dd. (5)

We now characterize functions fromH(Kd). LetKd,u(x, y) = ∏
j∈u K(xj , yj ) for x, y ∈

Dd denote a term in (5). Clearly,Kd,u is the reproducing kernel of theHilbert spaceH(Kd,u)

of functionsf (t1, t2, . . . , td ) defined onDd which do not depend ontj for all j /∈ u. The
spaceH(Kd,u) is the tensor product space of the spaces ofm-variate functions depending
on variables with indices from the subsetu. HereKd,∅ = 1 andH(Kd,∅) = span{1}.
We stress that, in general, some non-zero functions may belong to spacesH(Kd,u) for

many different subsetsu. For example, assume that the constant functionf ≡ 1 belongs to
H(K). Then this function obviously belongs toH(Kd,u) for all u. Functions fromH(Kd)

can be represented as a sum of functions fromH(Kd,u). That is, forf ∈ H(Kd) we have

f =
∑

u⊂{1,2,...,d}
fu =

∑
u⊂{1,2,...,d}

�d,ufd,u with fu = �d,ufd,u ∈ H(Kd,u). (6)

The termfd,u depends only on|u| m-variate variables indexed by the subsetu. For finite-
order weights the last sum consists ofO(dq

∗
) terms, whereq∗ is the order of the weights,

and each term depends on at mostq∗m variables.
In general, the representation (6) of fis notunique, and we have

‖f ‖2H(Kd)
= inf

{∑
u

�d,u‖fd,u‖2H(Kd,u)
: f =

∑
u

�d,ufd,u with fd,u ∈ H(Kd,u)

}
,

see[1, p. 353].
For positive weights�d,u, the representation (6) is unique iff 1/∈ H(K). If 1 /∈ H(K)

thenH(Kd,u)∩H(Kd,v) = {0} for all distinct subsetsuandvof {1,2, . . . , d}. The Hilbert
spaceH(Kd) is then the direct and orthogonal sumofHilbert spacesH(Kd,u) for all subsets
of u, and forf, g ∈ H(Kd) we have

〈f, g〉H(Kd) =
∑

u⊂{1,2,...,d}
�d,u〈fd,u, gd,u〉H(Kd,u). (7)

Later, we will be using a simple condition guaranteeing that 1/∈ H(K). Namely, let

A :=
∫
D2

�(t)�(x)K(t, x) d(t, x). (8)

ClearlyA ∈ [0, B], and the following lemma holds.

Lemma 1. Suppose thatA = 0.Then

1 /∈ H(K). (9)

Moreover,for every non-emptyu, v ⊂ {1, . . . , d}
if u �= v then Wd,uf ≡ 0 ∀f ∈ H(Kd,v), (10)
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whereWd,u : Fd → Fd is given by

Wd,uf (x) :=
∫
Dd

�d(t)Kd,u(t, x)f (t) dt ∀x ∈ Dd.

Proof. The lemma follows from the alreadymentioned fact thatA = 0 implies INT1(f ) =
0 for anyf ∈ H(K). Then INT1(1) = 1 �= 0 yields 1/∈ H(K).

It is also known that INT1(f ) = 〈f, h〉H(K) with h(y) = ∫
D

�(t)K(t, y) dt . Hence,
A = 0 impliesh ≡ 0, i.e.,∫

D

�(t)K(t, y) dt = 0 ∀y ∈ D.

Foru �= v, let j∗ ∈ u ∪ v andj∗ /∈ u ∩ v. Then

Wd,uKd,v(·, y)(x) =
∫
Dd

�d(t)Kd,u(t, x)Kd,v(t, y) dt = 0,

since the last integral is proportional to
∫
D

�(t)K(t, z) dt = 0, wherez = yj∗ if j∗ ∈ v,
andz = xj∗ if j∗ ∈ u. This holds for anyy ∈ Dd and sinceH(Kd,v) is the completion of
span{Kd,v(·, y) : y ∈ Dd}, this completes the proof. �

We now return to the general case, i.e., we do not necessarily assume that 1/∈ H(K).
Observe that (2) yields

Md :=
∫
Dd

�d(t)Kd(t, t) dt = �d,∅

+
∑

∅�=u⊂{1,2,...,d}
�d,u

(∫
D

�(t)K(t, t) dt

)|u|
< ∞. (11)

This implies thatH(Kd) ⊂ L2,�d (Dd) since one can show, similarly as in (3), that for any
f ∈ H(Kd) we have

‖f ‖L2,�d (Dd) :=
(∫

Dd

�d(t)f
2(t) dt

)1/2

� ‖f ‖H(Kd)M
1/2
d . (12)

Consider now linear multivariate operators defined over the spacesFd = H(Kd). More
precisely, ford = 1,2, . . . , let

Sd : Fd → Gd

be a continuous linear operator with a separable Hilbert spaceGd . Similarly to[20], we as-
sume that the operatorSd is also continuouswith respect to the normof the spaceL2,�d (Dd).
That is, there exists a non-negative numberCd such that

‖Sdf ‖Gd
�Cd‖f ‖L2,�d (Dd) ∀ f ∈ Fd. (13)

Themultivariate(weighted)approximation problemis defined as a specific instance of the
previous problem withSd = APPd andGd = L2,�d (Dd), where APPdf = f for all
f ∈ Fd . Clearly, for multivariate approximation,Cd = 1 for all d.
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Our goal is to approximate elementsSdf for f ∈ Fd . We approximateSdf by com-
puting finitely many valuesL(f ) of continuous linear functionals belonging to a class�
of permissible functionals fromFd to R. We study two classes of�. The first one is� =
�all = F ∗

d , consisting of all continuous linear functionals, and the second one is� = �std,
consisting of function evaluations. That is,L ∈ �std iff there exists at ∈ Dd such that
L(f ) = f (t) for all f ∈ Fd . Obviously,L is also continuous sinceL(f ) = 〈f,Kd(·, t)〉Fd

and‖L‖ = K
1/2
d (t, t), i.e.,�std ⊂ �all.

For our problems it is known that adaptive choice of linear functionals aswell as nonlinear
algorithms do not decrease the error more than non-adaptive information evaluations and
linear algorithms, see e.g.,[11]. That is, for a fixed numbern of functional evaluations, the
error is minimized by linear algorithms that use non-adaptively chosen linear functionals.
Hence, we can restrict our attention to such linear algorithms

Ad,n(f ) =
n∑

j=1

Lj (f )aj ,

whereLj ∈ � andaj ∈ Gd for j = 1,2, . . . , n.
The worst case error of the algorithmAd,n is defined as

ewor(Ad,n) := sup
f∈Fd

‖Sdf − Ad,nf ‖Gd

‖f ‖Fd

,

with a convention 0/0 = 0. SinceSd andAd,n are linear, we obviously haveewor(Ad,n) =
‖Sd − Ad,n‖. Here the operator norm is fromFd toGd . This implies that

‖Sdf − Ad,nf ‖Gd
� ‖f ‖Fd

· ewor(Ad,n) ∀ f ∈ Fd.

Forn = 0, we formally setAd,0 = 0 and thenewor(Ad,0) = ‖Sd‖ is the initial error which
can be obtained without sampling the functionsf from Fd . We want to reduce this initial
error by a factorε ∈ (0, 1).We are interested in finding the smallest numbernof evaluations
for which it is possible. Let

n(ε, Sd,�) := min{n : ∃Ad,n usingLj ∈ � such thatewor(Ad,n)� ε‖Sd‖}.
Since we are using different spaces and different operator norms, we will sometimes write
‖Sd‖ = ‖Sd‖Fd→Gd

to make it clear what spaces are involved in the operator norm.
As in many papers dealing with tractability, we say that the multivariate problem{Sd} is

tractablein the class� if there exist non-negative numbersC, p andq such that

n(ε, Sd,�)�Cε−p d q ∀ ε ∈ (0, 1) ∀ d = 1,2, . . . . (14)

The numbersp = p({Sd},�) andq = q({Sd}, �) in (14) are calledε- andd-exponents of
tractability; we stress that they are not necessarily uniquely defined.
If q = 0 in (14) then we say that the multivariate problem{Sd} is strongly tractablein

the class�. Theexponentpstr({Sd},�) of strong tractabilityis defined as the infimum of
numbersp satisfying (14) withq = 0.
Hence, tractability means that a polynomial number of evaluations inε−1 andd is enough

to reduce the initial error by a factorε, whereas strong tractability means that this number
is bounded only by a polynomial inε−1 independently ofd.
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3. Main results

We present in this section estimates onn(ε, Sd,�), and tractability results for spaces
equipped with general and finite-order weights for classes�all and�std. We begin with
estimates on the norm of APPd .

Lemma 2. Recall that A andB < ∞ are given by(8) and(2), respectively.
• There exists a numbercd ∈ [A,B] such that

‖APPd‖ = ‖APPd‖Fd→L2,�d (Dd) =

 ∑

u⊂{1,2,...,d}
�d,uc

|u|
d




1/2

. (15)

• If A = 0 then

‖APPd‖ = ‖APPd‖Fd→L2,�d (Dd) = max
u⊂{1,2,...,d}

(
�d,u‖W‖|u|)1/2 , (16)

whereW : H(K) → H(K) is given by

Wf (x) =
∫
D

�(t)K(t, x)f (t) dt ∀ x ∈ D

and‖W‖ = ‖APP1‖2H(K)→L2,�(D) �B.

Proof. ObviouslyA ∈ [0, B] andB is assumed to be finite. From (12) we have ‖APPd‖�
M

1/2
d andM1/2

d corresponds to (15) withcd = B. Hence,‖APPd‖ is upper bounded by
(15) with cd = B. On the other hand, consider the multivariate integration

INTdf =
∫
Dd

�d(t)f (t) dt ∀ f ∈ Fd.

Then‖INTd‖� ‖APPd‖ since|INTdf |� ‖f ‖L2,�d (Dd) = ‖APPdf ‖L2,�d (Dd). It is well
known that

‖INTd‖ =
(∫

D2
d

�d(t)�d(x)Kd(t, x) d(t, x)

)1/2

=

 ∑

u⊂{1,2,...,d}
�d,u A

|u|



1/2

.

Hence,‖APPd‖ is lower bounded by (15) withcd = A. By continuity of the right-hand
side of (15) as a function ofcd we conclude that there iscd ∈ [A,B] for which (15) holds.

LetWd = (APPd)∗APPd : Fd → Fd . It is known that

Wdf (x) =
∫
Dd

�d(t)Kd(t, x)f (t) dt, (17)

and‖APPdf ‖L2,�(Dd) = 〈Wdf, f 〉1/2Fd
. Hence,‖APPd‖ = ‖Wd‖1/2. Using (5) we have

Wdf =
∑

u⊂{1,2,...,d}
�d,uWd,uf ∀ f ∈ Fd,
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where, as in Lemma1,

Wd,uf (x) =
∫
Dd

�d(t)Kd,u(t, x)f (t) dt ∀ x ∈ Dd ⊂ Rdm.

We now show that

Wd,uf ∈ H(Kd,u) ∀ f ∈ Fd.

For u = ∅, this is trivial sinceWd,∅f = �d,∅
∫
Dd

�d(t)f (t) dt ∈ H(Kd,∅). For u �= ∅,
let {ek} be an arbitrary orthonormal system ofH(K). It is well known that the kernelK is
related to{ej } by the formula

K(t, x) =
dim(H(K))∑

k=1

ek(t)ek(x) ∀ t, x ∈ D ⊂ Rm.

For the kernelKd,u, we have

Kd,u(t, x) =
∏
j∈u

K(tj , xj ) =
∏
j∈u


dim(H(K))∑

k=1

ek(tj )ek(xj )


 ∀ tj , xj ∈ D.

Foru = {u1, u2, . . . , us}with s = |u|, andk = [k1, k2, . . . , ks] ∈ {1,2, . . . ,dim(H(K))}s ,
denoteeu,k(xu) = ∏s

j=1 ekj (xuj ) for xu ∈ D|u|. Then

Kd,u(t, x) =
dim(H(K))∑
k1,k2,...,ks=1

eu,k(tu)eu,k(xu)

and therefore

Wd,uf (x) =
dim(H(K))∑
k1,k2,...,ks=1

eu,k(xu)
∫
Dd

�d(t)eu,k(tu)f (t) dt .

Since{eu,k} is an orthonormal system ofH(Kd,u), we have

‖Wd,uf ‖2Fd
= ‖Wd,uf ‖2H(Kd,u)

=
dim(H(K))∑
k1,k2,...,ks=1

(∫
Dd

�d(t)eu,k(tu)f (t) dt
)2

�
dim(H(K))∑
k1,k2,...,ks=1

∫
Dd

�d(t)f
2(t) dt

∫
Dd

�d(t)e
2
u,k(tu) dtu

= ‖f ‖2L2,�d (Dd)

∫
D|u|

�d(tu)Kd,u(tu, tu) dtu = ‖f ‖2L2,�d (Dd)
B |u|.

This proves thatWd,uf ∈ H(Kd,u) and

‖Wd,uf ‖Fd
= ‖Wd,uf ‖H(Kd,u) � ‖f ‖L2,�d (Dd) B

|u|/2 ∀ f ∈ Fd.
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Assume now thatA = 0, and letf = ∑
v⊂{1,2,...,d} �d,vfd,v for fd,v ∈ H(Kd,v). Then,

due to Lemma1,

Wd,uf = �d,uWd,ufd,u. (18)

This means thatWdf = ∑
u �2d,uWd,ufd,u and

‖f ‖2Fd
=
∑
u

�d,u‖fd,u‖2H(Kd,u)
,

‖Wdf ‖2Fd
=
∑
u

�3d,u‖Wd,ufd,u‖2H(Kd,u)
.

Clearly, the norm ofWd,u depends only on the cardinality ofu and is equal to‖W‖|u|.
Hence, we have

‖Wd‖ = max
u

�d,u‖Wd,u‖ = max
u

�d,u‖W‖|u|.

Since〈Wf, f 〉H(K) = ‖f ‖2L2,�(D) �B ‖f ‖2H(K) by (3), we conclude that

‖W‖ = ‖APP1‖2H(K)→L2,�(D) �B.

This completes the proof. �

3.1. Upper bounds onn(ε, Sd,�)

In this subsection, we present upper bounds on the minimal numbern(ε, Sd,�) for
arbitrary weights� = {�d,u}. These bounds will allow us to conclude (strong) tractability
for finite-order weights and for arbitrary weights satisfying a certain condition. In the next
subsection, we present lower bounds onn(ε, Sd,�).

Theorem 1. LetMd be given by(11)andCd by (13).Assume there exists a non-negative
number� such that

N� := sup
d=1,2,...

Cd‖APPd‖
d� ‖Sd‖Fd→Gd

< ∞. (19)

Then

n(ε, Sd,�all)� d2�N2
�

Md

‖APPd‖2
(
1

ε

)2

, (20)

n(ε, Sd,�std)�
⌈(

2d2�N2
�

Md

‖APPd‖2
)2(1

ε

)4
⌉
. (21)

Proof. We first analyze the class�all. Our proof will be essentially the same as the proof
of Theorem 4.1.1 of[20], which is for the absolute errors,m = 1, and for a setDd of



68 G.W.Wasilkowski, H. Woźniakowski / Journal of Approximation Theory 130 (2004) 57–77

finite Lebesgue measure with�d = 1. To cover these differences, and for the sake of
completeness we present the modified proof.We start with APPd and consider the operator
Wd given by (17). It is known thatWd is a compact and self-adjoint operator. Let(�d,j , �d,j )
be eigenpairs ofWd , so thatWd�d,j = �d,j�d,j with

�d,1� �d,2 � · · · �0 and 〈�d,i , �d,j 〉Fd
= �i,j .

We also have

〈�d,i , �d,j 〉L2,�d (Dd) = 〈Wd�d,i , �d,j 〉Fd
= �d,i�i,j .

The sequence{�d,j } forms an orthonormal system ofFd , and therefore

Kd(t, x) =
∞∑
j=1

�d,j (t)�d,j (x).

Then

Md =
∫
Dd

�d(t)Kd(t, t) dt =
∞∑
j=1

〈�d,j , �d,j 〉L2,�d (Dd) =
∞∑
j=1

�d,j .

Sincej�d,j � �d,j + �d,j−1 + · · · + �d,1� ∑∞
i=1 �d,i = Md , we conclude that

�d,j �Mdj
−1.

It is known, see[13], that the algorithm

A∗
d,n(f ) =

n∑
j=1

〈f, �d,j 〉Fd
�d,j

has the minimal worst case error among algorithms usingn evaluations off, and its worst
case error is

ewor(A∗
d,n) = √

�d,n+1 � M
1/2
d (n + 1)−1/2.

From this we obtain

n(ε,APPd ,�all)� Md

‖APPd‖2
(
1

ε

)2

. (22)

For a general problemSd , consider the algorithmSdA∗
d,n. Using (13), we have

‖Sdf − SdA
∗
d,nf ‖Gd

‖f ‖Fd

�
Cd‖f − A∗

d,nf ‖L2,�(Dd)

‖f ‖Fd

� CdM
1/2
d

(n + 1)1/2
.

This yields

n(ε, Sd,�all) � C2
dMd

‖Sd‖2Fd→Gd

(
1

ε

)2

= d2�
(

Cd‖APPd‖
d�‖Sd‖Fd→Gd

)2
Md

‖APPd‖2
(
1

ε

)2

. (23)
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From (19), we conclude that

n(ε, Sd,�all)� d2�N2
�

Md

‖APPd‖2
(
1

ε

)2

,

which proves (20).
We now analyze the class�std. For the multivariate approximation problem, we use

Theorem 1 of[17] which bounds thenth minimal errore(n,�std) of algorithms using at
mostn function values (information from the class�std) by the kthminimal errorse(k,�all)

in the class�all. Namely we have

e(n,�std)� min
k=0,1,...

(
e2(k,�all) + Md k

n

)1/2

. (24)

As already proved,e2(n,�all)�Md/(n + 1). Hence, takingk = �√n − 1� for n�1 we
conclude that

e2(n,�std)� 2Md√
n
.

Using this inequality, we obtain thate(n,�std)� ε‖APPd‖ holds for

n(ε,APPd ,�std)� n =
⌈(

2Md

‖APPd‖2
)2 1

ε4

⌉
. (25)

For the problem{Sd}, let us consider the algorithmSdAd,n(f ) = ∑n
j=1 f (tj )Sdaj with

aj ∈ Fd . Then

‖Sdf − SdAd,n(f )‖Gd

‖Sd‖ � Cd‖APPd‖
‖Sd‖

‖f − Ad,n(f )‖L2,�d (Dd)

‖APPd‖
� d � N�

‖f − Ad,n(f )‖L2,�d (Dd)

‖APPd‖ .

It is shown in[17] that the estimate (24) on e(n,�std) for multivariate approximation holds
for certain algorithmsAd,n with aj ∈ Fd .
Hence, to solve the multivariate problemSd it is enough to solve the multivariate ap-

proximation problem APPd with ε replaced byε/(d �N�); andn(ε, Sd,�std) is therefore
bounded byn(ε/(d �N�),APPd ,�std). This and (25) leads to (21), and completes the proof.

�
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Using Lemma2 and Theorem1, we are ready to prove the main result of this paper
which shows strong tractability and tractability of multivariate problems{Sd} for finite-
order weights, depending on whetherA is positive or zero.

Theorem 2. Let � = {�d,u} be arbitrary finite-order weights of orderq∗. Let

� := B

‖APP1‖2H(K)→L2,�(D)

.

• If A = ∫
D2 �(t)�(x)K(t, x) d(t, x) > 0 then

◦ the multivariate approximation problem is strongly tractable in the classes�all and
�std. The exponents of strong tractability satisfy

pstr({APPd},�all)�2, pstr({APPd},�std)�4

and we have

n(ε,APPd ,�all)�
(
B

A

)q∗ (
1

ε

)2

, (26)

n(ε,APPd ,�std)�
⌈
4

(
B

A

)2q∗ (
1

ε

)4
⌉
, (27)

◦ the multivariate problem{Sd} is strongly tractable in the classes�all and�std, and
the exponents of strong tractability satisfy

pstr({Sd},�all)�2, pstr({Sd},�std)�4

whenever(13)holds and

M := sup
d=1,2,...

Cd‖APPd‖
‖Sd‖Fd→Gd

< ∞.

Furthermore,

n(ε, Sd,�all)�M2
(
B

A

)q∗ (
1

ε

)2

, (28)

n(ε, Sd,�std)�
⌈
4M4

(
B

A

)2q∗ (
1

ε

)4
⌉
. (29)

• If A = ∫
D2 �(t)�(x)K(t, x) d(t, x) = 0 then

◦ themultivariate approximation problem is tractable in the classes�all and�std.The
exponents of tractability satisfy

p({APPd},�all)�2, q({APPd},�all)� q∗,

p({APPd},�std)�4, q({APPd},�std)�2q∗
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and we have

n(ε,APPd ,�all)��q∗

 q∗∑

j=0

(
d

j

)(1
ε

)2

, (30)

n(ε,APPd ,�std)�




2�q∗

q∗∑
j=0

(
d

j

)
2(

1

ε

)4


 , (31)

◦ the multivariate problem{Sd} is tractable in the classes�all and �std, and the
exponents of tractability satisfy

p({Sd},�all)�2, q({Sd},�all)� q∗ + 2�,

p({Sd},�std)�4, q({Sd},�all)�2q∗ + 4�,

whenever(13)holds and there exists a non-negative number� for which

N� := sup
d=1,2,...

Cd‖APPd‖
d�‖Sd‖Fd→Gd

< ∞.

Furthermore,

n(ε, Sd,�all)� d2�N2
��q∗


 q∗∑

j=0

(
d

j

)(1
ε

)2

, (32)

n(ε, Sd,�std)�




2d2�N2

��q∗
q∗∑
j=0

(
d

j

)
2(

1

ε

)4


 . (33)

Proof. By (15) of Lemma2,

Md

‖APPd‖2 =
∑

u⊂{1,2,...,d} �d,uB
|u|∑

u⊂{1,2,...,d} �d,uc
|u|
d

with cd ∈ [A,B].

We now assume thatA > 0. Thencd is also positive and for finite-order weights withq∗
as its order we have

Md

‖APPd‖2 =
∑

u⊂{1,2,...,d} �d,uc
|u|
d (B/cd)

|u|∑
u⊂{1,2,...,d} �d,uc

|u|
d

�
(
B

A

)q∗

. (34)

Note that for APPd , we have Cd = 1 and (19) holds with� = 0 andN0 = 1. Then
(34) and (20) of Theorem1 with � = 0 proves that multivariate approximation is strongly
tractable and the estimate (26) on n(ε,APPd ,�all) holds.
For linear multivariate problem{Sd}, we note thatN0 = M < ∞. Then (34) and (20) of

Theorem1 yield strong tractability of{Sd} and the estimate (28). This concludes the proof
for the class�all andA > 0.
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Consider now the class�all andA = 0. From (16) of Lemma2we know that‖APPd‖2 =
maxu �d,u‖W‖|u|. Then for finite-order weights we have

Md

‖APPd‖2 �
∑

u �d,u‖W‖|u|(B/‖W‖)|u|

maxu �d,u‖W‖|u| ��q∗ ∑
u:|u|� q∗

1 = �q∗
q∗∑
j=0

(
d

j

)
, (35)

which is a polynomial indof degreeq∗. Using (20) of Theorem1with � = 0, we conclude
that multivariate approximation is tractable and the estimate (30) on n(ε,APPd ,�all) holds.
As before, we obtain tractability for{Sd} and the estimate (32) on n(ε, Sd,�all) by using
the bounds onn(ε/(d�N�),APPd ,�all). This completes the proof for the class�all.
We now turn to the class�std. Assume first thatA > 0. Then (25) and (34) yield

n(ε,APPd ,�std)�
⌈
4

(
B

A

)2q∗
1

ε4

⌉
.

This proves strong tractability of multivariate approximation in the class�std and the es-
timate (27) on n(ε,APPd ,�std). Similarly, we obtain strong tractability of{Sd} and the
estimate (29) by using the bound onn(ε/N0,APPd ,�std) with N0 = M.

If A = 0, then (25) and (35) yield

n(ε,APPd ,�std)�




2�q∗

q∗∑
j=0

(
d

j

)
2
1

ε4


 .

This proves tractability of multivariate approximation in the class�stdand the estimate (31)
onn(ε,APPd ,�std). Replacingε by ε/(d�N�), we obtain tractability of{Sd} and the esti-
mate (33). This completes the proof.�

Theorem2 addresses (strong) tractability of{Sd} for arbitrary finite-order weights. It is
possible toobtain (strong) tractability of{Sd} for otherweights satisfyingacertain condition.
This condition is given in the next theorem.

Theorem 3. LetA,B, �, N� andWbe defined as in Lemma2andTheorem1.Assume there
exists a non-negative number	 such that

�	 = sup
d=1,2,...

�	,d < ∞, (36)

where

�	,d :=
∑

u⊂{1,2,...,d} �d,uB
|u|

d	
(
�A,0 maxu⊂{1,2,...,d} �d,u‖W‖|u| + (

1− �A,0
)∑

u⊂{1,2,...,d} �d,uA|u|
) .
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Then
• the multivariate approximation problem is strongly tractable if	 = 0 and tractable if

	 > 0 in the classes�all and�std. Furthermore,

n(ε,APPd ,�all)� d	�	

(
1

ε

)2

, (37)

n(ε,APPd ,�std)�
⌈(

2d	�	

)2(1
ε

)4
⌉
, (38)

• the multivariate problem{Sd} is strongly tractable if� = 	 = 0, and tractable if
� + 	 > 0 in the classes�all and�std. Furthermore,

n(ε, Sd,�all)� d2�+	N2
��	

(
1

ε

)2

, (39)

n(ε, Sd,�std)�
⌈(

2d2�+	 N2
��	

)2(1
ε

)4
⌉
. (40)

Proof. To conclude (strong) tractability of APPd and Sd , it is enough to use the esti-
mates (20) and (21) of Theorem1 as well as the bounds onMd/‖APPd‖2. From Lemma2
we know that

Md

‖APPd‖2 �
∑

u �d,uB
|u|

�A,0maxu �d,u‖W‖|u| + (
1− �A,0

)∑
u �d,uA|u| � d	�	.

From this we get all the estimates of the theorem.�

It is easy to check that the condition�	 < ∞ for some non-negative	 may hold for
weights which are not finite order. For example, consider product weights, see e.g.,[10,16].
That is,�d,u = ∏

j∈u �d,j for some positive numbers�d,j with j = 1,2, . . . , d. If A ∈
(0, B) then it is easy to check that

a := sup
d=1,2,...

∑d
j=1 �d,j

ln (d + 1)
< ∞

implies that�	 < ∞ for 	 = a(B − A).
Another example is for order-dependent weights, see[3]. Then�d,u = 
d,|u| for some

positive
d,k with k = 1,2, . . . , d. For example, take
d,k = d−k. Then we have�0 < ∞,
since

∑
u

�d,uB
|u| =

d∑
k=0

(
d

k

)(
B

d

)k

=
(
1+ B

d

)d

� eB.
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3.2. Lower bounds onn(ε, Sd,�)

In this section, we prove lower bounds onn(ε, Sd,�)which show that some bounds from
the previous section are sharp. Sincen(ε, Sd,�std)� n(ε, Sd,�all) we restrict ourselves to
the class�all. Furthermore, since themultivariate approximation problem plays an essential
role in our analysis, we present lower bounds only forSd = APPd .

In particular, we will check that the estimates of Theorem2 for arbitrary kernelsK and
finite-order weights are sharp in the following sense. ForA > 0, Theorem2 states strong
tractability for multivariate approximation, although the estimate onn(ε,APPd ,�all) de-
pends exponentially on the orderq∗. We show that this exponential dependence is indeed
present for some kernelsK and some finite-order weights, and that the exponential depen-
dence is through(B/A)q

∗
, as in the estimate (26).

We now present such an example. Letm = 1,D = [0, 1] and�(t) = 1 for all t ∈ [0, 1].
For a positive integerk, consider the kernel

K(t, x) = 1+ 2
k∑

j=1

(sin(2�j t) sin(2�jx) + cos(2�j t) cos(2�jx)) .

ThenH(K) = span{1,sin(2�x), cos(2�x), . . . , sin(2�kx), cos(2�kx)}. We haveA = 1
andB = 1+ 2k. The operatorW is now given by

Wf (x)=
∫ 1

0
f (t) dt + 2

k∑
j=1

(
sin(2�jx)

∫ 1

0
sin(2�j t)f (t) dt

+ cos(2�jx)
∫ 1

0
cos(2�j t)f (t) dt

)
.

It is easy to check thatWf = f for all f ∈ H(K). Thus,W has the eigenvalue 1 of
multiplicity 1+ 2k. Observe that thej-fold tensor product operatorWj ofWhas(1+ 2k)j

eigenvalues equal to 1.
For a given q∗ andd � q∗, consider weights�d,u = 0 for all u except foru = u∗ =

{1,2, . . . , q∗} with �d,u∗ = 1. Then the approximation problem overH(Kd) is equivalent

to the approximation problem overH(
∏q∗

j=1K(tj , xj )). This approximation problem is of

norm 1, andn(ε,APPd ,�all) is equal to the total number of eigenvalues ofWq∗ larger than
ε2. For ε <1 we have

n(ε,APPd ,�all) = (1+ 2k)q
∗ =

(
B

A

)q∗

.

This proves that the exponential dependence onq∗ via (B/A)q
∗
, as in (26), is sharp in

general.
For A = 0, Theorem2 states tractability, but not strong tractability, of multivariate

approximation for arbitrary kernelK and finite-order weights. We show that indeed strong
tractability does not hold for some finite-order weights.We also show that the degree of the
dependence ond is q∗ as in the estimate (30).
Thus, consider the multivariate approximation problem withA = 0. From (9) we

know that 1 /∈ H(K). Let (�j , �j ) be the eigenpairs ofW, so thatW�j = �j�j with
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�1� �2� · · · �0, and〈�i , �j 〉H(K) = �i,j . We have�1 = ‖W‖, and sinceK is non-

zero we have�1 > 0. We take finite-order weights�d,u = 1/�|u|
1 for all |u|� q∗. Then

‖APPd‖ = 1 by (16).
Foru = ∅ we take�∅(x) = 1. For anyk = 1,2, . . . , q∗ and anyu = {u1, u2, . . . , uk} ⊂

{1,2, . . . , d}, define

�u(x) =
k∏

j=1

�1(xuj ).

Ford � q∗, we consider the operatorWd and conclude from (18) that

Wd�∅ = �∅, Wd�u = �u.

This means that the orthogonal functions�∅, �u are eigenfunctions ofWd and 1 is the
eigenvalue ofWd of multiplicity

∑
u:|u|� q∗ 1. Therefore forε < 1 we have

n(ε,APPd ,�all)�
q∗∑
j=0

(
d

j

)
.

This shows that strong tractability does not hold, and that we have a polynomial dependence
ondwith orderq∗, exactly as in the upper bound estimate (30).

4. Multivariate integration

In this section we consider the multivariate integration problem in which

Sdf = INTdf =
∫
Dd

�d(t)f (t) dt ∀ f ∈ H(Kd).

Recall that

‖INTd‖2 =
∫
D2

d

�d(t)�d(x)Kd(t, x) d(t, x) =
∑

u⊂{1,2,...,d}
�d,uA

|u|.

In particular, ifA = 0 then‖INTd‖2 = �d,∅; in this case, we will assume that�d,∅ > 0 to
make multivariate integration non-trivial.
For the class�all, themultivariate integrationproblem is not interesting since INTd ∈ �all

andn(ε, INTd ,�all) = 1 for all ε�0. For the class�std we may apply Theorem2. For
example, to apply (28) we note thatCd = 1. Hence, for finite-order weights withA > 0
we have

‖APPd‖2
‖INTd‖2 =

∑
u �d,uc

|u|
d∑

u �d,uA|u| �
(
B

A

)q∗

.

Then (28) states thatn(ε, INTd ,�std)� �4(B/A)6q∗�ε−4. This estimate may be signifi-
cantly improved when the multivariate integration problem is analyzed directly without
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relating this problem to the results of Theorem2 for the multivariate approximation prob-
lem.
In order to do this, we will use the estimate from[21], formula (20), which states that

n(ε, INTd ,�std)�
( ∫

Dd
�d(t)Kd(t, t) dt∫

D2
d
�d(t)�d(x)Kd(t, x) d(t, x)

− 1

)(
1

ε

)2

.

In our case, we have

n(ε, INTd ,�std)�
(∑

u �d,uB
|u|∑

u �d,uA|u| − 1

)(
1

ε

)2

.

This estimate yields the following theorem.

Theorem 4. Considermultivariate integration defined overH(Kd)with arbitrary weights.
• LetA > 0.Themultivariate integration problem is strongly tractable for arbitrary finite-

order weights of orderq∗ and

n(ε, INTd ,�std)�
((

B

A

)q∗

− 1

)(
1

ε

)2

.

• LetA = 0. If

�	 = sup
d=1,2,...

1

d 	

∑
∅�=u∈{1,2,...,d}

�d,u
�d,∅

B |u| < ∞

for some non-negative	, then the multivariate integration problem is strongly tractable
if 	 = 0 and tractable if	 > 0,and

n(ε, INTd ,�std)� d	�	

(
1

ε

)2

.
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